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The dynamical evolution of a recently introduced one-dimensional model �S. Biswas and P. Sen, Phys. Rev.
E 80, 027101 �2009�� �henceforth, referred to as model I�, has been made stochastic by introducing a param-
eter � such that �=0 corresponds to the Ising model and �→� to the original model I. The equilibrium
behavior for any value of � is identical: a homogeneous state. We argue, from the behavior of the dynamical
exponent z, that for any ��0, the system belongs to the dynamical class of model I indicating a dynamic phase
transition at �=0. On the other hand, the persistence probabilities in a system of L spins saturate at a value
Psat�� ,L�= �� /L��f���, where � remains constant for all ��0 supporting the existence of the dynamic phase
transition at �=0. The scaling function f��� shows a crossover behavior with f���=constant for ��1 and
f�����−� for ��1.
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The effect of noise on equilibrium behavior is well
known, e.g., there are order-disorder phase transitions in-
duced by thermal noise observed in many systems. Noise-
induced phase transitions may occur in dynamical systems as
well when the noise can drive the system from one dynami-
cal class to another. These dynamical classes are often char-
acterized by different dynamical exponents. In this paper, we
study a case of such a dynamical phase transition in a very
simple Ising-like spin system.

A dynamical model of Ising spins has been recently pro-
posed in �1� �which we refer to as model I henceforth� where
the state of the spins may change in two situations: first,
when its two neighboring domains have opposite polarity
and in this case the spin orients itself along the spins of the
neighboring domain with the larger size. This case may arise
only when the spin is at the boundary of the two domains. A
spin is also flipped when it is sandwiched between two do-
mains of spins with same sign. Except for the rare event
when the two neighboring domains of opposite spins are of
the same size, the dynamics in the above model is determin-
istic. This dynamics leads to a homogeneous state of either
all spin up or all spin down. Such evolution to absorbing
homogeneous states are known to occur in systems belong-
ing to directed percolation �DP� processes, zero temperature
Ising model, voter model etc �2,3�.

Model I was introduced in the context of a social system
where the binary opinions of individuals are represented by
up and down spin states. In opinion dynamics models such
representation of opinions by Ising or Potts spins is quite
common �4�. The key feature is the interaction of the indi-
viduals which may lead to phase transitions between homo-
geneous states to a heterogeneous state in many cases �5�.

Model I showed the existence of novel dynamical behav-
ior in a coarsening process when compared to the dynamical
behavior of DP processes, voter model, Ising models etc.
�6–10�. In this work, we have introduced stochasticity in the
dynamics of model I to see how it affects the coarsening
process.

Let dup and ddown be the sizes of the two neighboring
domains of type up and down of a spin at the domain bound-
ary �excluding itself�. In model I, probability P�up� that the
said spin is up is 1 if dup�ddown, 0.5 if dup=ddown and zero

otherwise. In the simplest possible way to introduce stochas-
ticity, one may take the probability of a boundary spin to be
up as P�up�=dup / �dup+ddown�. However, there is no param-
eter controlling the stochasticity here and moreover, we find
that the results are identical to the original model I.

In order to introduce a noiselike parameter which can be
tuned, we next propose that the probability that a spin at the
domain boundary is up is given by

P�up� � e��dup−ddown�, �1�

and it is down with probability

P�down� � e��ddown−dup�. �2�

The normalized probabilities are therefore P�up�
=exp �� / �exp����+exp�−���� and P�down�=1− P�up�,
where �= �dup−ddown�.

Obviously, �→� corresponds to model I while letting
�=0 we have equal probabilities of the up and down states,
making it equivalent to the zero-temperature dynamics of the
nearest-neighbor Ising model. Since the equilibrium states
for the extreme values �→� and �=0 are homogeneous �all
up or all down states�, it is expected that for all values of �
they will be remain so as is indeed the case.

As far as dynamics is concerned, we investigate primarily
the time-dependent behavior of the order parameter and the
persistence probability. In the one-dimensional chain of
length L, the order parameter is the conventional magnetiza-
tion given by M =

�Lup−Ldown�
L where Lup�Ldown� is the number of

up �down� spins in the system and L=Lup+Ldown, the total
number of spins. The average fraction of domain walls Dw,
which is the average number of domain walls divided by L is
also studied. Dw is identical to the inverse of average domain
size. The dynamical evolution of the order parameter and
fraction of domain walls is expected to be governed by the
dynamical exponent z; M � t−1/�2z� and Dw� t−z �11�.

The persistence probability of a spin is the probability that
it remains in its original state up to time t �10�. It has been
shown to have a power-law decay in many systems with an
associated exponent 	. To obtain both the exponents 	 and z
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in finite systems of dimension L from the persistence prob-
ability, the following scaling form is often used �12�

P�t,L� = t−	f�L/t1/z� . �3�

Another exponent, �=	z, is associated with the satura-
tion value of the persistence probability at t→� when
Psat�L�= P�t→� ,L��L−� �12�.

In model I, it was numerically obtained that 	�0.235 and
z�1.0 giving ��0.235, while in the one-dimensional Ising
model 	=0.375 and z=2.0 �exact results� giving �=0.75. It
is clearly indicated that model I and the Ising model belong
to two different dynamical classes. By introducing the pa-
rameter � one can therefore expect a transition from the
Ising to the model I dynamical behavior at some specific
value of �.

With respect to model I, �=0 is the maximum noise and
its inverse may be thought of an effective temperature. On
the other hand, from the Ising model view point, � plays the
role of noise. However it is not equivalent to thermal fluc-
tuations which can affect the state of any spin. With �, flip-
ping of spins can still occur at the domain boundaries only.
Hence, even with this noise, the equilibrium behavior is not
disturbed for any value of � �even for �→� which corre-
sponds to model I� while in contrast, any nonzero tempera-
ture can destroy the order of a one-dimensional Ising model.

It is useful to show the snapshots of the evolution of the
system over time for different � �Fig. 1�: to be noted is the
fact that for any nonzero �, the system equilibriates very fast
compared to the Ising limit �=0.

In the simulations, we have generated systems of size
1000
L
10 000 with a mininum of 1000 initial configura-
tions for the maximum size in general. Only for �=0, the
Ising limit, in which case the time taken to reach equilibrium
is order of magnitude higher than that for any nonzero �,
smaller systems have been simulated in some calculations.
Depending on the system size and time to equilibriate, maxi-
mum iteration times have been set. Random sequential up-
dating process has been used to control the spin flips.

On introducing �, we notice that well away from the Ising
limit �=0, the dynamics gives z�1.0 and 	�0.235 as in
model I. However, as � is made less than O�10−1�, the be-
havior of the relevant dynamic quantities deviate from a
simple power-law behavior. For example, the magnetization
shows an initial slow variation with time followed by a rapid
growth before reaching saturation for values of ��0.1 �Fig.
2�. It is difficult to fit a power law in either regime. This is
true for the domain wall fraction decay as well �not shown�.
In fact, the rapid growth of magnetization at later times is
apparently even faster than t1/2, that obtained for model I
�e.g., for �=0.001�. From the snapshots of the system for �
very close to zero, it is seen that for the first few steps the
system has a behavior similar to the Ising model ��=0�. This
explains the slow growth of magnetization initially. How-
ever, as soon as a domain shrinks in size compared to its
adjacent one, any nonzero � makes it vanish very rapidly.
However, it will be wrong to infer that the coarsening pro-
cess takes place faster than in model I, because in compari-
son, in model I, the system equilibriates in times much lesser
than that for any finite � �see Fig. 1�.
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FIG. 1. �Color online� Snapshots of the system in time for
different values of �=0.0,0.005,0.1 and �→� �top to bottom�
showing that for any nonzero �, the system equilibriates toward a
homogeneous state much faster compared to the �=0 case. These
snapshots are for a L=100 system.
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The question remains therefore whether and how one can
obtain an estimate of z for �→0. Since a direct fitting fails,
we try an indirect method. The average time teq to reach the
equilibrium state can be estimated from the time the magne-
tization reaches a value unity. teq is shown to scale as Lz in
Ising model with z=2 and for �→�, teq scales as Lz with
z=1 �inset of Fig. 3�. Hence we plot teq /L against � for
different L and find an interesting result. For values of �
greater than 0.01, it shows a nice collapse, indicating z=1
here. As � decreases, the deviation from a collapse starts
appearing, it getting more pronounced for smaller values of
�. However, at the same time, we notice that the deviation
from a scaling teq�L decreases for larger values of L sug-
gesting that the collapse as �→0 will improve with the sys-
tem size. Thus, we conclude that the exponent z equals unity
in the thermodynamic limit for any nonzero value of �. The
deviations from the scaling as �→0 are simply a finite size
effect.

Hence from the above behavior we conclude that the
model I behavior is valid for any finite � and a dynamic
transition takes place exactly at �=0.

Next, we focus on the persistence data. Once again, as
�→0, it is difficult to fit a unique power law to the persis-
tence probability �Fig. 4�. Here, in consistency with the mag-
netization results, we find an initial decay of persistence
quite fast and a late variation comparatively slower. The ini-
tial variation can be fitted to a power law and an estimate of
	 made this way shows a tendency to continuously vary to-
ward the �=0 value, i.e., 0.375. However, 	 is not to be
obtained from the early time behavior and there is definitely
a crossover to a different behavior in later times before the
persistence reaches saturation. Therefore determining 	 from
the initial variation is not a correct approach.

We even try to obtain a collapse by plotting P�t� / t−	

against L / tz using trial values of z and 	 as in �1,13�, but for
�→0, no collapse for large L / tz, i.e., for small t, can be
obtained, confirming once again that the determination of 	
is not possible in a straightforward manner.

We next try to find out whether the scaling law
Psat�L��L−� is valid for finite values of �. When we plot the
saturation values of persistence against different system
sizes, we do find nice power-law fittings and hence estimates
of � can be made �Fig. 5�. We find that � varies between
0.22 and 0.23 with no systematics indicating that it is inde-
pendent of �. This once again supports the fact that there is
a transition at �=0 as � has a known value �0.75� much
larger for �=0.

Although � shows no dependence on �, the saturation
values of the persistence probability show an interesting de-
pendence on �: for ��1, it is independent of � while for
small values of � it has a power-law variation. We in fact
find that the scaled variable Psat / � �

L �� with �=0.225 shows a
collapse when plotted against � suggesting a scaling form

Psat�L,�� = ��/L��f��� . �4�

The fact that for large values of �, the saturation values are
independent of � suggests that f��� varies as �−� here. We
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FIG. 2. �Color online� Magnetization as a function of time is
shown for �=0, 0.001, and 0.01. The two straightline in the log log
plot have slopes corresponding to model I �0.5� and Ising model
�0.25�. The �=0 result is for L=2000 while the others are for
L=10000.

10-1

100

101

10.10.01

t
e
q
/
L

β

L =1000
L =2000
L =5000

L=10000

101
102
103
104
105
106

103102

t
e
q

L

β=0

β inf

FIG. 3. �Color online� The values of the time to equilibriate teq

scaled by the system size shows that for large � there is a nice
collapse. For small �, there are deviations from the collapse which
decrease with the system size. Inset shows that teq scales as Lz for
the limiting values �=0 with z=2 and for �→�, z=1.
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FIG. 4. �Color online� The persistence probability against time
is shown for different values of � ��=100, 0.1, 0.01, and 0.005�
�from top to bottom�; for small � the slope cannot be uniquely
determined. The two straightlines in the log-log plot have slopes
corresponding to the model I �0.235� and Ising model �0.375�.
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indeed find this kind of a behavior with f���=constant for
��1 and f�����−� for ��1 �see inset of Fig. 5�.

We thus find that the effect of the noise parameter � is to
cause a dynamic phase transition at �=0 showing that the
behavior of model I is indeed very robust. On the other hand,
with respect to the Ising model, although the effect of noise

is not comparable to thermal fluctuations as far as order-
disorder transitions are concerned, it does induce a dynamic
phase transition at �=0. The signature of the dynamical
phase transition is seen in the variation in the dynamical
quantities as the �=0 point is approached, there are also
strong finite size effects.

One may raise the question as to what happens if � is
made negative. As expected, the system goes to a disordered
state for any nonzero � accompanied with exponential decay
of persistence probability. In the spin picture, a negative
value of � does not correspond to any physical model, but in
terms of domain wall movement, one has a system of mutu-
ally repulsive random walkers when ��0. The random
walkers tend to move away from their nearest neighbors and
therefore cannot annihilate each other but remain mobile all
the time destroying the persistence of the spins. Such situa-
tions were seen to arise in spin systems like the ANNNI
model �14� also. The dynamic behavior is therefore different
for ��0, �=0, and ��0. So, allowing negative values of
�, one may say that there is a dynamic phase transition oc-
curring at �=0 separating three different dynamical phases.
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FIG. 5. �Color online� The saturation values of the persistene
probability shows a variation L−� for values of �=10.0, 0.1, 0.01,
and 0.001 �from top to bottom� with �=0.225. Inset shows that the
scaled saturation values Psat / �� /L��= f��� varies as �−� for large
�.
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